Chemical Technology Archive

Chemists in the College of Arts and Sciences at Syracuse University in the USA, have come up with an innovative new way to visualise and monitor chemical reactions in real time. Members of the Maye Research Group in the Department of Chemistry designed a nanomaterial that changes colour when it interacts with ions and other small molecules during a chemical reaction.

The subject of an article in ‘ACS Nano’ (American Chemical Society, 2016), their discovery enables researchers to monitor reactions qualitatively with the naked eye and quantitatively with simple instrumentation.

TennysonDoane KevinCruz1Dr Tennyson Doane (left) and Kevin Cruz hold perovskites of different colours

“In many cases, a chemical reaction between molecules occurs in a solution that is colourless and transparent or looks like a milky suspension,” says Mathew Maye, associate professor of chemistry and the experiment’s team leader. “The only way to know if a reaction has occurred or not is to perform extensive analysis after a multi-step purification."

In an attempt to figure out why and how fast a reaction occurs (if at all), the group has designed a nanoparticle that reacts with byproducts of the reaction. “When the reactions occurs, the nanoparticle fluoresces at a different color, allowing us to gauge kinetics by eye, instead of with a million-dollar spectrometer,” Maye says.

Central to the group’s work is an emerging class of nanomaterials called perovskites. A perovskite is a special class of crystal, typically made up of metal ions and oxygen. The group's perovskites are composed of metal ions and a halide. At the nanoscale, perovskites are photo-luminescent, meaning that they emit light when ‘excited’ by a laser or lamp. That the colours they emit are determined, in part, by their ion concentrations makes perovskites unique among nanomaterials.

It also makes them ripe for application. Research groups in industry and academia see potential for perovskites in solar cells, light-emitting diodes, lasers and photo detectors.

Tennyson Doane, a post-doctoral researcher in the group, is the article's co-corresponding author with Maye. “We knew about the potential of these materials in energy research," Doane says. "We are interested in energy as well, and had this crazy idea of trying to use the ion concentration ratios of perovskites to detect ions in solution, and then perhaps monitor the chemical reaction, which is very difficult to do. We had no idea if it would work or not, so we just decided to go for it.”

reaction monitoring1A photo timeline of reaction monitoring using perovskite fluorescence

The group started by working with a very simple system that involved organic reactions of molecules called organohalides. When these molecules react, often forming carbon-carbon double bonds in what is known as an elimination reaction, the halide is released. (The halide is a bromine, chlorine or iodine ion.) Typically, the halide is an unimportant side-product of the reaction, until now.

“Our technology allows us to accurately detect the halide release,” says Kevin Cruz, a chemistry major and co-author of the article. “When the reaction starts, the perovskite fluoresces bright red. As the halide is released, or exchanged in the chemical reaction, our particle absorbs it, and the fluorescence colour changes proportionally to the halide concentration, from red to orange to yellow to green. When the colour is green, the reaction is over.”

Explains Doane: “Added to that is the fact that the perovskite concentration is very low, you just have to add a small amount to the reaction for observation. We have been able to calibrate the system very accurately, and from that can measure chemical kinetics in a new ‘colorimetric’ way."

In addition to Doane, Cruz and Maye, the article was co-written by Kayla Ryan, PhD student Laxmikant Pathade and Huidong Zang and Mircea Cotlet at the Center for Functional Nanomaterials at Brookhaven National Laboratory, each of whom made important measurements in the study.

“Who knows, maybe in the future, every chemist will use a Syracuse-based perovskite for monitoring their reactions,” Maye concludes.
For more information contact Rob Enslin on email rmenslin@syr.edu or tel: +1 315 443 3403.

Sources: Syracuse University News and VertMarkets’ Chemical Online for industry professionals. For more information go to http://www.chemicalonline.com/static/about

 

 

Contact Chemical Technology

As from January 2017, Chemical Technology and Mechanical Technology have merged to form MechChem Africa.

 

Title: Editor
Name: Peter Middleton
Emailmechchemafrica@crown.co.za
Phone: +27 11 622 4770
Fax: +27 11 615 6108

Title: Editor
Name: Glynnis Koch
Emailmechchemafrica@crown.co.za
Phone: +27 11 622 4770
Fax: +27 11 615 6108

Title: Advertising Manager
Name: Brenda Karathanasis
Emailbrendak@crown.co.za
Phone: +27 11 622-4770
Fax: +27 11 615-6108

 
Full Name*
Invalid Input

Company Name*
Invalid Input

Your Email*
Invalid Input

Phone*
Invalid Input

Postal Address 1*
Invalid Input

Postal Address 2*
Invalid Input

Postal Code*
Invalid Input

Street Address 1
Invalid Input

Street Address 2
Invalid Input

Postal Code
Invalid Input

Town / City*
Invalid Input

Country*
Invalid Input

Magazine

Invalid Input

Invalid Input